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Abstract—Image denoising and high-level vision tasks are
usually handled independently in the conventional practice of
computer vision, and their connection is fragile. In this paper,
we cope with the two jointly and explore the mutual influence
between them with the focus on two questions, namely (1) how
image denoising can help improving high-level vision tasks, and
(2) how the semantic information from high-level vision tasks can
be used to guide image denoising. First for image denoising we
propose a convolutional neural network in which convolutions are
conducted in various spatial resolutions via downsampling and
upsampling operations in order to fuse and exploit contextual
information on different scales. Second we propose a deep
neural network solution that cascades two modules for image
denoising and various high-level tasks, respectively, and use the
joint loss for updating only the denoising network via back-
propagation. We experimentally show that on one hand, the
proposed denoiser has the generality to overcome the perfor-
mance degradation of different high-level vision tasks. On the
other hand, with the guidance of high-level vision information,
the denoising network produces more visually appealing results.
Extensive experiments demonstrate the benefit of exploiting
image semantics simultaneously for image denoising and high-
level vision tasks via deep learning. The code is available online:
https://github.com/Ding-Liu/DeepDenoising

Index Terms—deep learning, neural network, image denoising,
high-level vision.

I. INTRODUCTION

Conventionally, low-level image processing problems, such
as image restoration and enhancement, and high-level vision
tasks are handled separately by different approaches in com-
puter vision. In this work, we connect them by showing the
mutual influence between the two, i.e., visual perception and
semantics, and propose a new perspective for solving both
the low-level image processing and high-level computer vision
problems in a single unified framework.

Image denoising, as one representative of low-level image
processing problems, aims to recover the underlying image
signal from its noisy measurement. Conventional image de-
noising approaches exploit either local or non-local image
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characteristics [1], [2], [3], [4], [5], [6]. In recent years, we
have witnessed the revival of deep learning in computer vision
and deep neural networks have been developed for image
denoising with notable performance improvement [7], [8], [9],
[10], [11]. In this work, we propose a new convolutional neural
network for image denoising. Inspired by U-Net [12], we con-
duct convolutions in different spatial scales via downsampling
and upsampling operations before the resulting features are
fused together, so that the kernels have a larger receptive field
after all feature contraction. Downsampling operations also
help to reduce the computation cost due to the reduction of
feature map sizes. We conduct extensive experiments and show
that our proposed denoising network achieves the state-of-the-
art performance across benchmark datasets.

Many popular image denoising approaches only minimizes
the mean square error (MSE) between the reconstructed and
clean images whereas important image details are sometimes
lost which results in image quality degradation; e.g., over-
smoothing artifacts in some texture-rich regions are commonly
observed in the denoised result from conventional methods.
Meanwhile, the semantical information of the image is usually
ignored during denoising. To overcome this drawback, we
propose to cascade the network models for image denoising
and a high-level vision task, respectively. During training, we
jointly minimize the image reconstruction loss, the percep-
tual loss over the feature domain, and the high-level vision
loss. With the guidance of image semantic information, the
denoising network is able to further improve visual quality and
generate more visually appealing results, which demonstrates
the importance of semantic information for image denoising.

When high-level vision tasks are conducted on noisy data,
image restoration is typically applied as an independent pre-
processing step, which might be suboptimal for the ultimate
goal [13], [14], [15]. Recent research reveals that neural
networks trained for image classification can be easily fooled
by small noise perturbation or other artificial patterns [16],
[17]. However, to the best of our knowledge, the problem
of how low-level image processing could affect high-level
semantical tasks is still not thoroughly studied [13], [14].
In this work, we observe an intriguing result that applying
a conventional denoising method such as CBM3D [18] over
noisy images may introduce unsatisfactory artifacts, which
results in poor results of image classification and semantic
segmentation. Therefore, we aim to produce an application-
driven denoiser which is capable of simultaneously removing
noise and preserving semantic-aware details for the high-level
vision tasks. To this end, in our proposed cascaded architecture



we keep the high-level vision network untouched but only
use the gradients of the joint loss to update the denoising
network, in order to make sure the denoising network has
good generalization about other high-level vision tasks. This
also ensures that the denoising module removes noises while
preserving the important semantic details to produce correct
high-level vision task results.

We systematically investigate the mutual influence between
the low-level image denoising and high-level vision networks
using our proposed architecture via numerous experiments. We
show that the cascaded network trained with the joint loss
not only boosts the perceptual quality of denoised images via
image semantic guidance, but also substantially improves the
accuracy of high-level vision tasks. Moreover, our proposed
training strategy makes the trained denoising network gener-
alizable to different high-level vision tasks. In other words,
our denoising module trained for one high-level vision task
can be directly plugged into other high-level tasks without
fine-tuning either module, which facilitates the training effort
when applied to various high-level vision tasks and keeps the
high-level vision networks performing consistently for noisy
and noiseless images.

In short, the main contributions of this paper are as follows:

o To the best of our knowledge, this is the first attempt
to investigate the benefit of exploiting image semantics
simultaneously for image denoising and high-level vision
tasks under a unified deep learning framework.

« We demonstrate that high-level semantics can be used for
image denoising to generate visually appealing results in
a deep learning fashion.

o Our proposed training strategy enables the robustness of
the trained denoising network to various high-level vision
tasks so that it can directly work with various high-level
vision networks without any fine-tuning.

This paper is built upon our previous work [19] with
several notable improvements. First, compared with [19] we
additionally incorporate the perceptual loss over the feature
domain in our combined loss in order to capture more semantic
information from multilevel feature domains. Second, we
provide a detailed ablation study of the denoising network
architecture, and we show an analysis of the gradient vi-
sualization of the cascade architecture, in order to further
investigate how high-level image semantics guides low-level
image denoising. Third, we conduct a subjective evaluation on
several recent image denoising methods to thoroughly measure
the visual quality of denoised results. Finally, we present a
more comprehensive experiment section including compar-
isons of denoising results over more benchmark datasets,
and we extend our proposed denoising method to real noise
removal.

The remainder of this paper is organized as follows. Sec-
tion II reviews existing image denoising methods in the
literature. Section III presents our image denoising network
and the proposed cascaded architecture. Section IV provides
the experimental results. Section V concludes this paper.

II. RELATED WORK

Denoising is the task of estimating the high-quality signal
from its noisy measurements. Classical image denoising meth-
ods take advantage of local or non-local structures presented
in the image explicitly. Natural images are well-known to
be patch-wise sparse or compressible in transform domain,
or over certain dictionary. Prior works [1], [20], [21] exploit
such local structures and reduce noise by coefficient shrinkage
for image restoration. The later approaches, including SSC
[3], CSR [22], NCSR [4], GSR [23], WNNM [5], PCLR
[24], PGPD [6], STROLLR [25], as well as BM3D [2] and
its extension for color images CBM3D [18] — group similar
patches within the image globally via block matching or
clustering, and impose non-local structural priors on these
groups, which usually lead to state-of-the-art image denoising
performance.

More recently, the popular deep neural network techniques
have been applied to low-level vision tasks. Specifically, a
number of deep learning models have been developed for
image denoising [7], [26], [8], [27], [9], [28], which can be
classified into two categories: multilayer perception (MLP)
based models and convolutional neural network (CNN) based
models. Early MLP based models for image denoising include
the stacked denoising autoencoder [7], which is an extension of
the stacked autoencoder originally designed for unsupervised
feature learning. A denoising autoencoder is proposed for both
image denoising and blind image inpainting by Xie et al.
[27]. Burger et al. [8] introduce a plain MLP and thoroughly
compare its denoising performance with BM3D [2] in different
experimental settings. CNNss are first utilized for image denois-
ing by Jain and Seung [26]. Recent works [29], [10] attempt
to unfold the iterative algorithms, and construct a cascaded
convolutional filtering architecture for image denoising. Very
deep networks are developed with skip connections for image
restoration [9], [11], and achieve superior performance over
other recent methods. Dilated convolutions are adopted to learn
the residual image for denoising in [30]. A CNN is designed to
implicitly learn the regularizer of the alternating minimization
algorithm for regularization-based image restoration methods
in [28]. The formatted residual information between the noise-
less image and its denoised version is learned via a second
network in [31]. The non-local self-similarity property of
natural images are exploited with CNNs in [32], [33]. FFDNet
is proposed in [34] to work on downsampled images in order to
reduce the inference time. Non-local self-similarity of images
is exploited and incorporated into a recurrent neural network
in [35].

Class information is exploited for improving image denois-
ing in [36], where a two-stage strategy is adopted. Specifically,
first the images are classified and then go through separate
class-specific denoisers. As the classification and denoising
stages are decoupled, this approach may lead to sub-optimal
solution, comparing to our proposed end-to-end framework in
which denoisers and classifiers are jointly trained.

III. METHOD

In this section, we first introduce the denoising network
utilized in our framework, and then explain our framework
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Figure 1. (a) Overview of our proposed denoising network. (b) Architecture of the feature encoding module. (c) Architecture of the feature decoding module.

that cascades this image denoising module and the module
for high-level vision task with its training strategy and joint
loss in detail.

A. Denoising Network

We propose a convolutional neural network for image de-
noising, which takes a noisy image as input and outputs the re-
constructed image. This network conducts feature contraction
and expansion through downsampling and upsampling opera-
tions, respectively. Each pair of downsampling and upsampling
operations brings the feature representation into a new spatial
scale, so that the whole network can process information on
different scales.

Specifically, on each scale, the input is encoded after down-
sampling the features from the previous scale. After feature
encoding and decoding possibly with features on the next
scale, the output is upsampled and fused with the feature on the
previous scale. Such pairs of downsampling and upsampling
steps can be nested to build deeper networks with more spatial
scales of feature representation, which generally leads to better
restoration performance. Considering the trade-off between
computation cost and restoration accuracy, we choose three
scales for the denoising network in our experiments, while
this framework can be easily extended for more scales. The
ablation study of the denoising network architecture can be
found in Section IV-Al.

These operations together are designed to learn the residual
between the input and the target output and recover as many
details as possible, so we use a long-distance skip connection
to sum the output of these operations and the input image, in
order to generate the reconstructed image. The overview is in
Figure 1 (a). Each module in this network will be elaborated
on as follows.

Feature Encoding: We design one feature encoding module
on each scale, which is one convolutional layer plus one
residual block as in [37]. The architecture is displayed in
Figure 1 (b). Note that each convolutional layer is immediately
followed by spatial batch normalization and a ReLLU neuron.

From top to down, the four convolutional layers have 128,
32, 32 and 128 kernels in size of 3 x 3,1 x 1,3 x 3 and
1 x 1, respectively. The output of the first convolutional layer
is passed through a skip connection for element-wise sum with
the output of the last convolutional layer.

Feature Decoding: The feature decoding module is de-
signed for fusing information from two adjacent scales. Two
fusion schemes are tested: (1) concatenation of features on
these two scales; (2) element-wise sum of them. Both schemes
obtain similar denoising performance. Thus we choose the first
scheme to accommodate feature representations of different
channel numbers from two scales. We use a similar architec-
ture as the feature encoding module except that the numbers
of kernels in the four convolutional layers are 256, 64, 64 and
256. Its architecture is in Figure 1(c).

Feature Downsampling & Upsampling: Downsampling
operations are adopted multiple times to progressively increase
the receptive field of the following convolution kernels and
to reduce the computation cost by decreasing the feature
map size. The larger receptive field enables the kernels to
incorporate larger spatial context for denoising. We use 2 as
both the downsampling factor and the upsampling factor, and
try two schemes for downsampling in the experiments: (1)
max pooling with stride of 2; (2) conducting convolutions
with stride of 2. Both schemes achieve similar denoising
performance in practice, so we use the second scheme in the
rest of the experiments for computation efficiency. Upsampling
operations are implemented by deconvolution with 4 x 4
kernels, which aim to expand the feature map to the same
spatial size as the previous scale.

Since all the operations in our proposed denoising network
are spatially invariant, it has the merit of handling input images
of arbitrary size.

B. When Image Denoising Meets High-Level Vision Tasks

We propose a robust deep architecture processing a noisy
image input, via cascading a network for denoising and the
other for high-level vision task, aiming to simultaneously:
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Figure 2. Overview of our proposed cascaded network.

1) reconstruct visually pleasing results guided by the high-
level vision information, as the output of the denoising
network;

2) attain sufficiently good accuracy across various high-
level vision tasks, when trained for only one high-level
vision task.

The overview of the proposed cascaded network is displayed in
Figure 2. Specifically, given a noisy input image, the denoising
network is first applied, and the denoised result is then fed
into the following network for high-level vision task, which
generates the high-level vision task output.

Training Strategy: First we initialize the network for high-
level vision task from a network that is well-trained in the
noiseless setting. We train the cascade of two networks in an
end-to-end manner while fixing the weights in the network
for high-level vision task. Only the weights in the denoising
network are updated by the error back-propagated from the fol-
lowing network for high-level vision task, which is similar to
minimizing the perceptual loss for image super-resolution [38].
The reason for adopting such a training strategy is to make
the trained denoising network robust enough without losing
the generality for various high-level vision tasks. More specif-
ically, our denoising module trained for one high-level vision
task can be directly plugged into networks for other high-level
tasks without fine-tuning either the denoiser or the high-level
network. Our approach not only facilitates the training effort
when applying the denoiser to different high-level tasks while
keeping the high-level vision network performing consistently
for noisy and noise-free images, but also enables the denoising
network to produce high-quality perceptual and semantically
faithful results.

Loss: Recent works [39], [40] discover that multi-level fea-
ture statistics extracted from a trained CNN notably represent
the visual semantics in various scales. We aim to use this
property to enhance the quality of the denoised results from
our framework. There are three loss components adopted in
our framework, and we describe them sequentially as follows.

The reconstruction loss of the denoising network is the mean
squared error (MSE) between the denoising network output
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and the noiseless image, which can be represented as

H
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where z is the noisy input image and 2 is the noiseless image.
Fp denotes the denoising network. z, & and Fp(z) are of size
H x W. Z; ; indicates the pixel in the i-th column and the
j-th row of Z.

In addition to the reconstruction loss calculated on the image
domain, we define the perceptual loss as the euclidean distance
between the feature representations of a reconstructed image
Fp(z) and the reference image Z [38]. Here we choose the
perceptual feature extractor ¢(-) to be the first several layers
of the high-level vision network. Specifically, when we adopt
VGG-based networks for image classification and semantic
segmentation in our experiments, we use the feature relu3_3
as the perceptual feature representation. The perceptual loss
can be represented as

Hy Wy
Lp(Fp(x),7) H¢W¢ ;; —o(&)i )%,
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where the perceptual feature representations of ¢(Z) and
¢(Fp(z)) are of size Hy x Wi

The losses of the classification task and the segmentation
task both are the cross-entropy loss between the predicted
label and the ground truth label. The joint loss is defined as
the weighted sum of the reconstruction loss, the perceptual
loss and the loss for high-level vision task, which can be
represented as
L(z,Z,y) = Lp(z,2)+ApLp(Fp(x),Z)+Ag Ly (Fp(x),y),

3)

where y is the ground truth label of high-level vision task.
Ly(Fp(z),y) represents the loss of the high-level vision
network with Fp(z) as the input, and L is the joint loss,
as illustrated in Figure 2. Ap and Ay are the weights for
balancing the losses Lp, Lp and Ly.



IV. EXPERIMENTS

In this section, we first show the experiment results of our
proposed denoising network, and then discuss its relation with
high-level vision networks. Finally, we extend our denoising
network to the case of real noise removal.

A. Image Denoising

Our proposed denoising network takes RGB images as
input, and outputs the reconstructed images directly. We add
independent and identically distributed Gaussian noise with
zero mean to the original image as the noisy input image
during training. We use the same training set as in [11], which
is 432 color images from the Berkeley segmentation dataset
[41]. The loss of separately training such a denoising network
is equivalent to Equation 3 as Ap = Ay = 0. We use SGD
with a batch size of 32, and the input patches are 48 x 48 pixels.
The initial learning rate is set as 10~% and is divided by 10
after every 500,000 iterations. The training is terminated after
1,500,000 iterations. We train a different denoising network
for each noise level in our experiment.

1) Analysis of Network Architecture: To investigate the
architecture of our proposed denoising network, we design a
set of controlled experiments with different network structures,
in order to analyze a number of design choices and exam-
ine their contributions to the overall denoising performance.
Specifically, we change the number of spatial scales of feature
maps, the design of the encoding and decoding modules, as
well as the existence of the global skip connection. Recall
that we use one convolutional layer plus one residual block
from [37] as the encoding and decoding modules, and we
test the case in which the four convolutional layers in each
module have (128, 32, 32, 128) kernels or (256, 64, 64, 256)
kernels. We use these models to test on the widely used Kodak
dataset,! which consists of 24 color images with ¢ = 35. The
average PSNR (in dB) and the number of model parameters
are displayed in Table I. It is observed that the performance
gets better when the computation cost becomes higher (i.e.
more spatial scales and more model parameters). The global
skip connection improves the results. Considering the trade-
off between the denoising performance and the computational
cost, we adopt the encoding module of (128, 32, 32, 128)
kernels and the decoding module of (256, 64, 64, 256) kernels
with three spatial scales and the global skip connection in the
rest of our experiments.

2) Comparisons with State-of-the-Art Methods: We com-
pare our denoising network with several state-of-the-art color
image denoising approaches on various noise levels: o =
25,35 and 50. We evaluate their denoising performance
over the following two datasets: the Kodak dataset, and the
CBSD68 dataset which consists of 68 color images as in [34].
Table II and III shows the peak signal-to-noise ratio (PSNR)
results for CBM3D [18], MCWNNM [42], DnCNN [11],
FFDNet [34] and our proposed method on these two datasets,
respectively. It is noteworthy that we calculate PSNRs on the
whole images of the Kodak dataset, rather than the cropped

Uhttp://rOk.us/graphics/kodak/

regions used in [34]. We do not list other methods [8], [20],
[5], [10], [30] whose performance is worse than DnCNN or
FFDNet. The implementation codes used are from the authors’
websites? and the default parameter settings are adopted in our
experiments.

It is clear that our proposed method outperforms all the
competing approaches quantitatively across different noise
levels. It achieves the highest PSNR in almost every image
of the Kodak dataset, and obtains the highest average PSNR
over the CBSD68 dataset.

B. When Image Denoising Meets High-Level Vision Tasks

We choose two high-level vision tasks as representatives
in our study: image classification and semantic segmentation
[43], which have been dominated by deep network based
models. We utilize two popular VGG-based deep networks
in our system for each task, respectively. VGG-16 in [44]
is employed for image classification; we select DeepLab-
LargeFOV in [45] for semantic segmentation. We follow the
preprocessing protocols (e.g. crop size, mean removal of each
color channel) in [44] and [45] accordingly while training and
deploying them in our experiments.

As for the cascaded network for image classification
and the corresponding experiments, we train our model on
ILSVRC2012 training set, and evaluate the classification ac-
curacy on ILSVRC2012 validation set. Ap and Ay are empir-
ically set as 0.5 and 0.25, respectively. As for the cascaded
network for image semantic segmentation and its correspond-
ing experiments, we train our model on the augmented training
set of Pascal VOC 2012 as in [45], and test on its validation
set. \p and Ay are empirically set as 0.5 and 0.5, respectively.

1) High-Level Vision Information Guided Image Denoising:
The typical metric used for image denoising is PSNR, which
has been shown to sometimes correlate poorly with human
assessment of visual quality [46]. Since PSNR depends on
the reconstruction error between the denoised output and the
reference image, a model trained by minimizing MSE on the
image domain should always outperform a model trained by
minimizing our proposed joint loss (with the guidance of high-
level vision semantics) in the metric of PSNR. Therefore, we
emphasize that the goal of our following experiments is not to
pursue the highest PSNR, but to demonstrate the qualitative
difference between the model trained with our proposed joint
loss and the model trained with MSE on the image domain.

In our cascade architecture, we study the mutual influence
between image denoising and high-level vision tasks. Consid-
ering image classification as an example of high-level vision
tasks, the loss used in our framework is composed of (1) the
image reconstruction loss from the denoising network, (2) the
perceptual loss from the VGG-based network, and (3) the clas-
sification loss from the VGG-based network. First we analyze
the contribution of each loss component, by visualizing the
gradient with respect to the input noisy image for applying

2CBM3D: http://www.cs.tut.fi/ foi/lGCF-BM3D

MCWNNM: https://github.com/csjunxu/MCWNNM-ICCV2017
DnCNN: https://github.com/cszn/DnCNN

FFDNet: https://github.com/cszn/FFDNet



Table I

DIFFERENT NETWORK DESIGNS AND THEIR CORRESPONDING DENOISING PERFORMANCES. WE FINALLY CHOOSE THE ARCHITECTURE IN BOLD FOR
OUR DENOISING NETWORK.

| Scale No. | Skip connection | Encoding module | Decoding module | Parameters | PSNR

2 v (128,32, 32, 128) | (128, 32, 32, 128) 384k 30.41
2 x (128, 32, 32, 128) | (256, 64, 64, 256) 637k 30.39
2 v (128, 32, 32, 128) | (256, 64, 64, 256) 637k 30.54
2 v (256, 64, 64, 256) | (256, 64, 64,256) | 1780k | 30.70
3 v (128, 32, 32, 128) | (128, 32, 32, 128) 592k 30.64
3 x (128, 32, 32, 128) | (256, 64, 64, 256) | 1,026k | 30.52
3 v (128, 32, 32, 128) | (256, 64, 64,256) | 1,026k | 30.83
3 v (256, 64, 64, 256) | (256, 64, 64, 256) | 2,198k | 30.87
4 v (128,32, 32, 128) | (128, 32, 32, 128) 970k 30.76
4 x (128,32, 32, 128) | (256, 64, 64, 256) | 1488k | 30.67
4 v (128, 32, 32, 128) | (256, 64, 64, 256) | 1488k | 3091
4 v (256, 64, 64, 256) | (256, 64, 64, 256) | 3945k | 30.96

Table 1T
COLOR IMAGE DENOISING RESULTS (PSNR) OF DIFFERENT METHODS ON THE KODAK DATASET. THE BEST RESULT IS SHOWN IN BOLD.

\ I o=12 I

oc=35 i o =50 |

[Tmage ]| CBM3D_|[MCWNNM| DnCNN | FFDNet | Proposed || CBM3D MCWNNM| DnCNN | FFDNet | Proposed || CBM3D [MCWNNM| DnCNN | FFDNet | Proposed |

01 29.13 28.66 29.75 29.65 29.76 27.31 26.93 28.10 28.01 28.11 25.86 25.28 26.52 26.45 26.55
02 32.44 31.92 32.97 32.86 33.00 31.07 30.62 31.65 31.60 31.75 29.84 29.27 30.44 30.35 30.54
03 34.54 34.05 34.97 34.92 35.12 32.62 32.27 33.37 33.38 33.58 31.34 30.52 31.76 31.77 31.99
04 32.67 32.42 32.94 32.90 33.01 31.02 30.92 31.51 31.49 31.59 29.92 29.37 30.12 30.09 30.22
05 29.73 29.37 30.53 30.35 30.55 27.61 27.53 28.66 28.52 28.72 25.92 25.60 26.77 26.67 26.87
06 30.59 30.18 31.05 30.99 31.08 28.78 28.44 29.37 29.34 2945 27.34 26.70 27.74 27.72 27.85
07 33.66 33.36 34.42 34.31 34.47 31.64 31.53 32.60 32.54 32.70 29.99 29.51 30.67 30.66 30.82
08 29.88 29.39 30.30 30.04 30.37 27.82 27.67 28.53 28.30 28.64 26.23 25.86 26.65 26.50 26.84
09 34.06 33.42 34.59 34.52 34.63 32.28 31.76 33.06 33.00 33.11 30.86 30.00 31.42 31.40 31.53
10 33.82 33.23 34.33 34.24 34.38 31.97 31.51 32.74 32.68 32.83 30.48 29.63 31.03 30.99 31.17
11 31.25 30.62 31.82 31.70 31.84 29.53 29.04 30.23 30.14 30.29 28.00 27.41 28.67 28.56 28.76
12 33.76 33.02 34.12 34.04 34.18 32.24 31.52 32.73 32.65 32.83 30.98 30.00 31.32 31.24 31.47
13 27.64 27.19 28.26 28.17 28.24 25.70 25.40 26.46 26.39 26.47 24.03 23.70 24.73 24.67 24.76
14 30.03 29.67 30.79 30.67 30.80 28.24 28.05 29.17 29.07 29.20 26.74 2643 27.57 27.48 27.63
15 33.08 32.69 33.32 33.24 33.35 31.47 31.15 31.89 31.82 31.96 30.32 29.59 30.50 30.44 30.59
16 32.33 31.79 32.69 32.66 32.74 30.64 30.15 31.16 31.14 31.23 29.36 28.53 29.68 29.63 29.78
17 32.93 32.39 33.53 33.47 33.50 30.64 30.75 31.96 31.94 31.98 29.36 28.98 30.33 30.33 30.40
18 29.83 29.46 30.40 30.31 30.46 28.00 27.70 28.72 28.63 28.79 26.41 25.94 27.03 26.96 27.14
19 31.78 31.29 32.23 32.12 32.30 30.19 29.86 30.80 30.70 30.88 29.06 28.44 29.34 29.26 29.49
20 33.45 32.78 34.15 34.03 34.29 31.84 31.32 32.73 32.65 3291 30.51 29.79 31.28 31.21 31.53
21 30.99 30.55 31.61 31.53 31.63 29.17 28.86 29.94 29.88 29.98 27.61 27.13 28.27 28.21 28.34
22 30.93 30.48 31.41 31.33 31.38 29.36 28.93 29.94 29.88 29.95 28.09 27.47 28.54 28.48 28.58
23 34.79 34.45 35.36 35.31 35.40 33.09 32.79 33.86 33.82 33.89 31.75 30.96 32.18 32.22 32.30
24 30.09 29.93 30.79 30.66 30.77 28.19 28.17 28.98 28.89 29.03 26.62 26.37 27.18 27.11 27.30
[Average]| 3181 | 3135 [ 3235 | 3225 | 3239 || 3004 | 2970 3076 | 3069 | 3083 || 2862 | 2802 | 2916 | 2910 | 2927 |
Table I classification loss, where the energy is more concentrated on

COLOR IMAGE DENOISING RESULTS (PSNR) OF DIFFERENT METHODS ON
THE CBSD68 DATASET. THE BEST RESULT IS SHOWN IN BOLD.

[ [[ CBM3D | MCWNNM [ DnCNN [ FFDNet [ Proposed |

o =25 30.71 30.23 31.23 31.21 31.32
o =35 28.89 28.57 29.58 29.58 29.73
o =50 27.38 26.63 27.92 27.76 28.09

only (1) the image reconstruction loss, (2) the perceptual loss,
and (3) the classification loss, respectively. Several examples
from ILSVRC2012 validation set are displayed in Figure 3.
Figure 3(c) shows that the energy is spread out across
the visualization of gradient map with respect to the input
noisy image for only the reconstruction loss, since the additive
noise is distributed ubiquitously in the same level over the
image, and the reconstruction loss is not spatially biased.
In contrast, Figure 3(e) shows the visualization of gradient
map with respect to the input noisy image for only the

regions with class-specific details, which usually contain key
features to recognize the class of images. These regions are
generally the texture-rich regions that are prone to suffer from
oversmoothing in conventional denoising approaches, such as
the fur of fox and dog, as well as the feather of bird in Figure 3.
Figure 3(d) is the visualization of gradient map with respect
to the input noisy image for only the perceptual loss, and the
energy tends to focus on a number of local features. In other
words, with the class information as auxiliary supervision, our
denoising network trained with the joint loss is able to denoise
such class-specific regions differently from the rest of image,
which demonstrates that these three types of losses work in
a complementary manner for denoising. In addition, since the
joint loss is the linear combination of these three losses, by
adjusting the weights of the joint loss, one can control the
visual quality of the denoising results which preserves different
types/regions of image details.

Figure 4 displays two image denoising examples from
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Figure 3. From left to right: (a) Ground truth images in ILSVRC2012 validation set. (b) Noisy images. (c) The visualization of gradient with respect to the
input noisy image for only the reconstruction loss. (d) The visualization of gradient with respect to the input noisy image for only the perceptual loss. (e)
The visualization of gradient with respect to the input noisy image for only the classification loss.

the Kodak dataset. A visual comparison is illustrated for a
zoom-in region: (I) and (IIT) are the denoising results using
CBM3D [18], and DnCNN [11], respectively; (IV) is the
proposed denoiser trained separately without the guidance
of high-level vision information; (V) is the denoising result
using the proposed denoising network trained jointly with
a segmentation network. We can find that the results using
CBM3D, DnCNN and our separately trained denoiser generate
oversmoothing regions, while the jointly trained denoising
network is able to reconstruct the denoised image which
preserves more details and textures with better visual quality.

In order to more thoroughly quantify the perceptual qual-
ity of the denoised results, we perform a mean opinion
score (MOS) test. We compare the following four denoising
methods: CBM3D, DnCNN, our proposed denoising network
without high-level guidance and with high-level guidance.
In our test, for each noisy image the denoised results from
these four methods are shown simultaneously. We use scores
from 1 to 4 to indicate from low image quality to high

(d) (e

image quality, and ask the raters to rank the denoised results
by assigning corresponding scores. 15 raters are invited to
participate our test. In each test, 5 images from the Kodak
dataset and 5 images from the CBSD68 dataset are randomly
selected and the denoised results are from the noise level of
50. The MOS result of our perceptual evaluation is shown in
Figure 5. We find that our proposed denoising method with
high-level guidance achieves the highest score, showing high-
level semantics is able to improve the visual perception in our
proposed framework.

2) Generality of the Denoiser for High-Level Vision Tasks:
We now investigate how the image denoising can enhance the
high-level vision applications, including image classification
and semantic segmentation, over the ILSVRC2012 and Pascal
VOC 2012 datasets, respectively. The noisy images (¢ =
15, 30, 45, 60) are denoised and then fed into the VGG-based
networks for high-level vision tasks. To evaluate how different
denoising schemes contribute to the performance of high-level
vision tasks, we experiment with the following cases:



(1 (I11) (ID) (I1D)

%) V) 1) V)

%) (VI %) (VID)
(a) (b)

Figure 4. Two image denoising examples from the Kodak dataset with noise level of 50 are displayed in (a) and (b). We show (I) the ground truth image and
the zoom-in regions of: (II) the noisy image; (III) the denoised image by CBM3D; (IV) the denoised image by DnCNN; the denoising result of our proposed
model (V) without the guidance of high-level vision information; (VI) with the guidance of high-level vision information and (VII) the ground truth.

o Noisy images are directly fed into the high-level vision

Table IV network, termed as VGG. This approach serves as the
CLASSIFICATION ACCURACY AFTER DENOISING NOISY IMAGE INPUT, baseline.
AVERAGED OVER ILSVRC2012 VALIDATION DATASET. RED IS THE BEST o Noisy images are first denoised by CBM3D, and
AND BLUE IS THE SECOND BEST RESULTS. . . . . ’
then fed into the high-level vision network, termed as
VGG | CBM3D + | Separate + quqt Joint Training CBM3D+VGG.
LSS VGG __| Training | (Cross-Task) o Noisy images are denoised via the separately trained
—15 Top-1| 62.4 68.2 68.3 69.9 69.8 d L . t K d then fed into the high-level visi
o=15| Top-5 | 842 288 387 395 30.4 enoising network, and then fed into the high-level vision
=30 | Top-1] 444 623 62.7 67.1 66.4 network, termed as Separate+VGG.
Top-5| 68.9 84.8 84.9 87.6 87.2 o Our proposed approach: noisy images are processed by
—45 Top-1| 24.3 55.2 54.6 63.2 62.1 h de of th K hich i ined usi
= | Top-5 | 46.1 794 78.8 84.7 84.0 the cascade of these two networks, which 1s trained using
=60 | Top-1| 114 50.0 50.1 59.4 57.2 the joint loss, termed as Joint Training.
Top-5| 263 742 745 819 803 e A denoising network is trained with the classification

network in our proposed approach, but then is connected
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Figure 5. Mean opinion scores of the subjective evaluation for four denoising
methods. The longer bar indicates the larger variance of the scores.

Table V
SEGMENTATION RESULTS (MIOU) AFTER DENOISING NOISY IMAGE INPUT,
AVERAGED OVER PASCAL VOC 2012 VALIDATION DATASET. RED IS THE
BEST AND BLUE IS THE SECOND BEST RESULTS.

’ | VGG | CBM3D + [ Separate +| Joint [Joint Training
VGG VGG Training | (Cross-Task)
o=15 | 56.78 59.58 58.70 60.47 60.41
o=30 | 43.43 55.29 54.13 57.88 56.30
o=45 | 27.99 50.69 49.51 54.84 54.03
=60 14.94 46.56 46.59 52.05 51.84

to the segmentation network and evaluated for the task of
semantic segmentation, or vice versa. This is to validate
the generality of our denoiser for various high-level tasks,
termed as Joint Training (Cross-Task).

Note that the weights in the high-level vision network are
initialized from a well-trained network under the noiseless
setting and not updated during training in our experiments.

Table IV and Table V list the performance of high-level
vision tasks, i.e., top-1 and top5 accuracy for classification
and mean intersection-over-union (IoU) without conditional
random field (CRF) postprocessing for semantic segmentation.
We notice that the baseline VGG approach obtains much lower
accuracy than all the other cases, which shows the necessity of
image denoising as a preprocessing step for high-level vision
tasks on noisy data. When we only apply denoising without
considering high-level semantics (e.g., in CBM3D+VGG and
Separate+VGG), it also fails to achieve high accuracy due to
the artifacts introduced by the denoisers. The proposed Joint
Training approach achieves sufficiently high accuracy across
various noise levels.

As for the case of Joint Training (Cross-Task), first we train
the denoising network jointly with the segmentation network
and then connect this denoiser to the classification network.
As shown in Table IV, its accuracy remarkably outperforms
the cascade of a separately trained denoising network and a
classification network (i.e., Separate+VGG), and is comparable
to our proposed model dedicatedly trained for classification
(Joint Training). In addition, we use the denoising network

jointly trained with the classification network to connect the
segmentation network. Its mean IoU is much better than
Separate+VGG in Table V. These two experiments show that
the high-level semantics of different tasks are universal in
terms of low-level vision tasks, which is in line with intuition,
and the denoiser trained in our method has the generality for
various high-level tasks.

Figure 6 displays two visual examples of how the data-
driven denoising can enhance the semantic segmentation per-
formance. It is observed that the segmentation result of the
denoised image from the separately trained denoising network
has lower accuracy compared to those using the joint loss
and the joint loss (cross-task), while the zoom-in region of its
denoised image for inaccurate segmentation in Figure 6 (b)
contains oversmoothing artifacts. In contrast, both the Joint
Training and Joint Training (Cross-Task) approaches achieve
finer segmentation result and produce more visually pleasing
denoised outputs simultaneously.

C. Extension to Real Noise Removal

Synthetic Gaussian noise removal has been extensively stud-
ied in previous works [1], [8], [2], [21]. However, it is unclear
if denoisers can be generalized from removing synthetic noise
to handling realistic noise, which is studied in [47]. Here, we
further test our method on real noisy images in the Darmstadt
Noise Dataset (DND) [48], where the images are taken with
higher ISO, and the corruption can be more complicated than
i.i.d. Gaussian noise [49]. Denoising examples using CBM3D,
DnCNN and our proposed method are shown in Figure 7. It
can be seen that CBM3D and DnCNN are prone to generate
oversmoothing regions, while our proposed method preserves
more local edges and high-frequency components, which leads
to denoised images with better visual quality. This shows
that our denoising method is robust to the noise statistical
distribution, and thus demonstrates good generalization to
realistic corruption.

V. CONCLUSION

Investigating the relation between low-level image process-
ing and high-level semantic tasks has great practical value
in various applications of computer vision. In this paper, we
handle these two components in a simple yet efficient way by
allowing the high-level semantic information to flow back to
the low-level image processing part, which achieves superior
performance in both image denoising and various high-level
vision tasks. In addition, the denoiser trained for one high-level
vision task in this manner has the robustness to other high-level
vision tasks. Overall, it provides a feasible and robust solution
in a deep learning fashion to real world problems, For future
work, we will explore to embed the high-level semantics to
more low-level vision tasks, e.g., super-resolution [50], [51],
as well as to bring more types of high-level vision tasks [52],
[53], [54] into consideration.
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Figure 6. Two semantic segmentation examples from Pascal VOC 2012 validation set. From left to right: (a) the ground truth image, the denoised image
using (b) the separately trained denoiser, (c) the denoiser trained with the reconstruction and segmentation joint loss, and (d) the denoiser trained with the
classification network and evaluated for semantic segmentation. Their corresponding segmentation label maps are shown below. The zoom-in region which

generates inaccurate segmentation in (b) is displayed in the red box.

Figure 7. Two denoising examples on real noisy images from DND. (a) the
crop region of original images. (b) the denoising results from CBM3D. (c) the
denoising results from DnCNN. (d) the denoising results from our method,
i.e., the denoiser trained with the joint loss.
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